Personal tools
You are here: Home About the project
Log in


Forgot your password?
 

About the project

Virtual Reality (VR) immersion and interaction features are widely used in engineering tasks in order to simulate cost and time-intensive activities.  In aircraft design, efficient execution of man-in-the-loop simulation tasks has been used as means for assessment of the aircraft's lifecycle usage.  However, when potential users of an aircraft-related virtual product get immersed into virtual environments, they often feel the full synthetic environment like an unrecognizable ambient, and so they reject the immersion into the simulation as a work practice.  This effect is due to the lack of realism of the virtual environments.  Moreover, devices for interacting with digital mock-ups do not adequately match human capabilities, at least in comparison with human’s standard work practices.  VISION will use as a 'baseline' the worldwide academic knowledge and the functionality provided by current world class VR software.  It will advance the state-of-the art both at technology and application level by improving the performance of aircraft-related virtual products and environments with respect to criteria such as the realism of rendered virtual environment, trade-off of image quality during user interaction, tolerance to task execution changes, immersed user's presence, pick / grasp quality, training, acquisition and maintenance overhead and input data configuration control.

The technological objective of VISION is to specify and develop key interface features in fundamental cornerstones of virtual reality technology, namely in (1) photorealistic immersive visualization and (2) interaction.  In particular, it aims at removing the current drawbacks of the underlying technology and better accommodate the specific needs of the human-oriented life cycle procedures (design, validation, and training), related to critical aircraft virtual products (e.g. virtual cabin etc.).  The technological achievements of VISION will enhance the realism of the digital human-in-the loop VR simulations and optimize the human-virtual product integration, in the specific domain. 

The application oriented objective of VISION is to drive specific technological advances in immersive VR improving the human-oriented functionality and usage of aircraft-related virtual products along the product life-cycle.  The immersive interface technologies to be developed will enhance the engineering context of these virtual products by enabling their increased use for activities, such as design verification, ergonomics validation, specifications of equipment displays, operational and situational training.  Thus, they will help address in a more flexible, reliable and cost efficient way the development phase as well as the safety performance of these products.

The workplan of the project includes eight work packages.  In WP1, the specification of the virtual product requirements will provide the application space of the project solutions.  For each of the basic VISION modules (visualization, interaction), specific technology requirements will be defined.  In WP2, the human-centered requirements and their implications in human-machine interaction within the aircraft-related virtual products will be analyzed.  The two major simulation modules will be next developed.  WP3 is in charge of the Visualization Module.  Development work will address advanced rendering features considering the perception of the human towards light illumination and the real-time constraints of the immersive environment.  WP4 is in charge of the Interaction module.  Development work will address advanced hardware/concepts for markerless body tracking, new methods for user interfacing along with interaction metaphors.  The individual visualization and interaction simulation modules will be next integrated into a common multi-modal interface platform (WP5).  In WP6, the integrated platform will be demonstrated based on real-life industrial scenarios.  Demonstration will give input to system evaluation further improvement.  WP7 and WP8 will be in charge of the exploitation / dissemination and the management of the project activities, respectively.

VISION aims to develop advanced VR based simulation functionality in support of the design and ‘virtual prototyping’ of critical aircraft-related products.  It will deliver specific advances in fundamental cornerstones of the VR technology, such as the immersive visualization and interaction, so as to improve the human-oriented functionality and usage of these virtual products along their life-cycle.  The human factors perspective on the design of Virtual Reality interfaces is expected to facilitate the “acceptance” of the new methodologies by new user groups, and their integration in the everyday business practices.  The project will also deliver a common multi-modal interface platform, which will seamlessly integrate the novel simulation features.  The platform will provide engineers with cost-efficient testing tools and methods and will further enable the collaborative use of these tools by remotely located users for co-operative design activities.  VISION will finally deliver a set of application demonstrators involving aircraft-related virtual product use cases, which will be based on real-life industrial scenarios.  The technological output of the project is expected to have a significant impact on the reduction of aircraft development costs and time to market, as well as on the improvement of aircraft safety.

VISION WP Roadmap 

 

 

 

 

 

 

 
Document Actions
March 2020 »
March
MoTuWeThFrSaSu
1
2345678
9101112131415
16171819202122
23242526272829
3031